
Data Encoding for Byzantine-Resilient Distributed

Gradient Descent

Deepesh Data

University of California, Los Angeles

CA 90095, USA

Email: deepeshdata@ucla.edu

Linqi Song

City University of Hong Kong

Hong Kong SAR

Email: linqi.song@cityu.edu.hk

Suhas Diggavi

University of California, Los Angeles

CA 90095, USA

Email: suhasdiggavi@ucla.edu

Abstract—We consider distributed gradient computation,
where both data and computation are distributed among m

worker machines, t of which can be Byzantine adversaries,
and a designated (master) node computes the model/parameter
vector, iteratively using gradient descent (GD). The Byzantine
adversaries can (collaboratively) deviate arbitrarily from their
gradient computation. To solve this, we propose a method based
on data encoding and (real) error correction to combat the
adversarial behavior. We can tolerate up to t ≤ ⌊m−1

2
⌋ corrupt

worker nodes, which is information-theoretically optimal. Our
method does not assume any probability distribution on the
data. We develop a sparse encoding scheme which enables com-
putationally efficient data encoding. We demonstrate a trade-off
between the number of adversaries tolerated and the resource
requirement (storage and computational complexity). As an
example, our scheme incurs a constant overhead (storage and
computational complexity) over that required by the distributed
GD algorithm, without adversaries, for t ≤ m

3
.

I. INTRODUCTION

Map-reduce architecture [1] is implemented in many dis-

tributed learning tasks, where there is one designated machine

(called the master) that computes the model iteratively, based

on the inputs from the worker machines, at each iteration,

typically using descent techniques, like gradient descent,

the Newton’s method, etc. The worker nodes perform the

required computations using local data, distributed to the

nodes [2]. Several other architectures, including having no

hierarchy among the nodes have been explored [3].

In several applications of distributed learning, including the

Internet of Battlefield Things (IoBT) [4], federated optimiza-

tion [5], the recruited worker nodes might be partially trusted

with their computation. Therefore, an important question

is whether can reliably perform distributed computation,

taking advantage of partially trusted worker nodes. These

(Byzantine) adversaries, can arbitrarily deviate from their

specified programs. The problem of distributed computation

with Byzantine adversaries has a long history [6], and there

has been recent interest in applying this computational model

to large-scale distributed learning [7]–[9].

In this paper, we propose a Byzantine-resilient distributed

optimization algorithm based on data encoding and error

correction (over real numbers). Our proposed algorithm

differs from existing Byzantine-resilient distributed learning

algorithms in one or more of the following aspects: (i) it does

not make statistical assumptions on the data or Byzantine

attack patterns; (ii) it is information-theoretically optimal

and can tolerate up to a constant fraction (< 1/2) of the

worker nodes being Byzantine; (iii) it enables a trade-off (in

terms of storage and computation overhead in worker nodes)

with Byzantine adversary tolerance, without compromising

the efficiency at the master node.

Our algorithm encodes the data used by the m worker

nodes, using ideas from real-error correction to enable toler-

ance to Byzantine workers. It develops an efficient “decod-

ing” scheme at the master node, to process the inputs from

the workers, to compute the true gradient. It uses a two-

phase approach at each iteration of the gradient calculation.

Each worker node performs computation oblivious to the

encoded data, i.e., they perform the same operations as

they would have for the original (uncoded) data. The main

result (summarized in Theorem 1) demonstrates a trade-off

between the Byzantine resilience (in terms of the number of

adversarial nodes) and the resource requirement (storage and

computational complexity). We can also handle streaming

data, where data arrives in batches, rather than being available

at the beginning of the computation; see Section V. Finally,

the scheme can handle both Byzantine attacks and missing

updates (e.g., caused by delay and asynchrony of worker

nodes). Though data encoding is a one-time process, it has

to be efficient to harness the advantage of distributed compu-

tation. We design a sparse encoding process, based on real-

error correction [10], which enables efficient encoding, and

the worker nodes alternatively locally encode using the sparse

structure. This allows encoding with storage redundancy of

2m/(m − 2t) (which is constant even if t is a constant

fraction of m), and one-time computational cost for encoding

is O((1 + 2t)nd).

Paper organization. Our problem formulation and the

main result are stated in Section II, which includes related

work. We present our scheme in Section III, and analyze its

use of storage and computational resources in Section IV.

In Section V, we extend our encoding procedure to the

streaming data model. We conclude with a short discussion

in Section VI.

Notation. We denote vectors by bold small letters (e.g.,

x,y, z, etc.) and matrices by bold capital letters (e.g.,

A,F,S,X, etc.). We denote the size of a matrix X by

2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, October 2-5, 2018

978-1-5386-6596-1/18/$31.00 ©2018 IEEE 863

|X|. For any positive integer n ∈ N, we denote the set

{1, 2, . . . , n} by [n]. For n1, n2 ∈ N, where n1 ≤ n2, we

write [n1 : n2] to denote the set {n1, n1 + 1, . . . , n2}. For

any vector u ∈ R
n and any set S ⊂ [n], we write uS to

denote the |S|-length vector, which is the restriction of u to

the coordinates in the set S . The support of a vector u ∈ R
n

is defined by supp(u) := {i ∈ [n] : ui 6= 0}. We say that a

vector u ∈ R
n is t-sparse if |supp(u)| ≤ t.

II. PROBLEM SETTING AND OUR RESULTS

Given a dataset consisting of n data points {(xi, yi)}
n
i=1,

where, for every data point (xi, yi), xi ∈ R
d is called the

feature vector and yi ∈ R is its ground truth label. We want

to learn a linear regression model w ∈ R
d that minimizes

the squared loss function J(w):

arg min
w∈Rd

1

2
‖Xw − y‖2

︸ ︷︷ ︸

J(w)

=
1

2

m∑

i=1

|Xiw − yi‖
2

︸ ︷︷ ︸

Ji(w)

, (1)

where (Xi,yi) is stored on machine i. This problem is often

solved using distributed Gradient Descent (GD), where at

each iteration t, the workers calculate the local gradient of

the cost function Ji(·) at wt:

∇Ji(wt) = XT
i (Xiwt − y). (2)

The master node aggregates the local gradients to compute

∇J(wt) = XT (Xwt − y) =

m∑

i=1

∇Ji(wt), (3)

and then update the linear regression model parameter using

wt+1 = wt − α · ∇J(wt), where α is the step size or the

learning rate, determining the convergence behavior. There

are standard choices for it; see for example [11, Chapter 9].

Adversary model. The adversary can corrupt any t of the

worker nodes1 and the compromised nodes can send local

outcomes that are arbitrarily far away from the actual local

outcomes. The adversarial nodes can collude, and can even

know the data of other workers. The master node does not

know which t worker nodes are corrupted, but knows t, the

maximum possible number of adversarial nodes.

Remark 1. A well-studied problem is that of asynchronous

distributed optimization, where the workers can have different

delays in updates [12]. One mechanism to deal with this is to

wait for a subset of responses, before proceeding to the next

iteration, treating the others as missing (or erasures) [13].

Byzantine attacks are quite distinct from such erasures, as

the adversary can report wrong local gradients, requiring the

master node to create mechanisms to overcome such attacks.

If the master node simply aggregates the collected updates as

in (3), the computed gradient could be arbitrarily far away

from the true one, even with a single adversary [14].

1Our results also apply to a slightly different adversarial model, where
the adversary can adaptively choose which of the t worker nodes to attack
at each iteration. However, in this model, the adversary cannot modify the
local stored data of the attacked node, as otherwise, over time, it can corrupt
all the data, making any defense impossible.

A. Our Approach

Since ∇J(w) = XT (Xw − y), a natural approach for

computing the gradient is to compute it in two rounds:

(i) compute u := Xw − y in the first round by multi-

plying A(1) := [X − y] with [wT 1]T ; and (ii) com-

pute ∇J(w) = XTu in the second round by multiplying

A(2) := XT with u. To combat against the adversar-

ial worker nodes, we do both of these steps using data

encoding and error correction (over R); see Figure 1 for

a pictorial description of our approach. More specifically,

for the first round, we encode A(1) using a sparse en-

coding matrix S(1) = [(S
(1)
1)T , . . . , (S

(1)
m)T]T and store

S
(1)
i A(1) at the i’th worker node; and, for the second

round, we encode A(2) using another sparse encoding matrix

S(2) = [(S
(2)
1)T , . . . , (S

(2)
m)T]T , and store S

(2)
i A(2) at the

i’th worker node. Now, in the 1st round of the gradient

computation at w, the master node broadcasts v = [wT 1]T

and the i’th worker node replies with S
(1)
i A(1)v (a corrupt

worker may report an arbitrary vector); upon receiving all the

vectors, the master node applies error-correction procedure to

recover u = A(1)v, which it broadcasts in the 2nd round,

and similarly can recover A(2)u (which is equal to the

gradient) at the end of the 2nd round. Our main result for

the Byzantine-resilient distributed GD is as follows:

Theorem 1 (Main Result). Let (X,y) ∈ R
n×(d+1) denote

the data. Let m denote the total number of worker nodes. We

can compute the gradient exactly in a distributed manner in

the presence of t corrupt worker nodes and s stragglers, with

the following guarantees, where ǫ > 0 is a free parameter.

• (s+ t) ≤
⌊

ǫ
1+ǫ
· m2

⌋

.

• Total storage requirement is roughly 2(1 + ǫ)|X|.
• Computational complexity for each gradient computa-

tion:

– At each worker node is O((1 + ǫ)nd
m
).

– At the master node is O((1 + ǫ)(n+ d)m).

• Total encoding time is O
(

nd
(

ǫ
1+ǫ

m+ 1
))

.

Remark 2. The statement of Theorem 1 allows for any s

and t, as long as (s+ t) ≤
⌊

ǫ
1+ǫ
· m2

⌋

. As we are handling

both erasures and errors in the same way2 the corruption

threshold does not have to handle s and t separately. To

simplify the discussion, for the rest of the paper, we consider

Byzantine corruption, and denote the corrupted set by I ⊂
[m] with |I| ≤ t, with the understanding that this can also

work with stragglers.

Remark 3. Let m be an even number. Note that we can get

the corruption threshold t to be any number less than m/2,

but at the expense of increased storage and computation.

For any δ > 0, if we want to get δ close to m/2, i.e.,

t = m/2 − δ, then we must have (1 + ǫ) ≥ m/2δ. In

2When there are only stragglers, one can design an encoding scheme
where both the master and the worker nodes operate oblivious to encoding,
while solving a slightly altered optimization problem [13], in which gradients
are computed approximately, leading to more efficient straggler-tolerant GD.

864

particular, at ǫ = 2, we can tolerate up to m/3 corrupt nodes,

with constant overhead in the total storage as well as on the

computational complexity. Our encoding is also efficient and

requires O
(

nd
(

ǫ
1+ǫ

m+ 1
))

time. Note that O(nd) is equal

to the time required for distributing the matrix A among

m workers (for performing distributed MV multiplication

without the adversary); and the encoding time in our scheme

(which results in an encoded matrix that provides Byzantine-

resiliency) a factor of (2t+ 1) more.

Remark 4. On comparing the resource requirements of our

method with the plain distributed GD with no adversarial

protection, we have that, in our scheme (i) the total storage

requirement is O(1+ǫ) factor more (which is just a constant

overhead); (ii) the amount of computation at each worker

node is O(1+ǫ) factor more (which, again, is just a constant

overhead); and (iii) the amount of computation at the master

node is O((1+ ǫ)(1+ n
d
)) factor more, which is comparable

in cases where n is not much bigger than d.

Remark 5. Our scheme is not only efficient (both in terms

of computational complexity and storage requirement), but

it can also tolerate up to ⌊m−1
2 ⌋ corrupt worker nodes (by

taking ǫ = m − 1 in Theorem 1). It is not hard to prove

that this bound is information-theoretically optimal, i.e., no

algorithm can tolerate ⌈m2 ⌉ corrupt worker nodes, and at the

same time correctly computes the gradient.

B. Related Work

There has been significant recent interest in using coding-

theoretic techniques to mitigate the well-known straggler

problem [12], including gradient coding [15]–[18], encoding

computation [19], [20], data encoding [13]. However, one

cannot directly apply the methods for straggler mitigation

to the Byzantine attacks case, as we do not know which

updates are under attack. Distributed computing with Byzan-

tine adversaries is a richly investigated topic since [6], and

has received recent attention in the context of large-scale

distributed optimization and learning [7]–[9], [21]. These can

be divided into two categories, one which have statistical

analysis/assumptions (either explicit statistical models for

data [9], [21], or through stochastic GD [7]. Our method

gives deterministic guarantees, distinct from these works, but

similar in spirit to [8], which is the closest related work.

Our storage redundancy factor is 2m/(m − 2t), which is

constant even if t is a constant fraction of m. In contrast,

the storage redundancy factor required in [8] is 2t + 1,

growing linearly with the number of corrupt worker nodes.

This significantly reduces the computation time at the worker

nodes in our scheme compared to the scheme in [8], without

sacrificing on the computation time required by the master

node. Their coding in [8] is restricted to data replication

redundancy, as they encode the gradient as done in [15],

enabling application to convex problems; in contrast, we

encode the data enabling significantly smaller redundancy,

and apply it to quadratic optimization, and is also applicable

to MV multiplication. A two-round approach for gradient

computation has been proposed for straggler mitigation [19],

but our method for MV multiplication differs from that, as

we have to provide adversarial protection. Data encoding

proposed in [13] applies only to stragglers, and has low-

redundancy and complexity, by allowing convergence to an

approximate, rather than exact solution.

III. OUR SOLUTION

In the section, we describe the core technical part of our

two round gradient computation approach – a method of

performing matrix-vector (MV) multiplication in a distributed

manner in the presence of a malicious adversary who can

corrupt at most t of the worker nodes. Here, the matrix is

fixed and we want to right-multiply a vector with this matrix.

Given a fixed matrix A ∈ R
nr×nc and a vector v ∈ R

nc ,

we want to compute Av in a distributed manner in the

presence of at most t corrupt worker nodes; see Section II

for details on the model. Our method is based on data

encoding and real error correction, where the matrix A is

encoded and distributed among all the worker nodes, and

the master recovers the MV product Av using real error

correction; see Figure 1. We will think of our encoding matrix

as S = [ST
1 ST

2 , . . . ,S
T
m], where each Si is a p× nr matrix

and pm > nr. We will determine the value of p later and the

entries of S later. For i ∈ [m], we store the matrix SiA at the

worker node i. As described in Section II, the computation

proceeds as follows: The master sends v to all the worker

nodes and receives SiAv+ei back from worker i, for every

i ∈ [m]. Let ei = [ei1, ei2, . . . , eip]
T for every i ∈ [p]. Note

that ei = 0 if the i’th node is honest, otherwise can be

arbitrary. In order to find the corrupt worker nodes, master

equivalently writes {SiAv + ei}
m
i=1 as p systems of linear

equations.

h̃i(v) = S̃iAv + ẽi, i ∈ [p] (4)

where, for every i ∈ [p], ẽi = [e1i, e2i, . . . , emi]
T , and S̃i

is an m × nr matrix whose j’th row is equal to the i’th
row of Sj , for every j ∈ [m]. Note that at most t entries

in each ẽi are non-zero. Observe that {SiAv + ei}
m
i=1 and

{S̃iAv + ẽi}
p
i=1 are equivalent systems of linear equations,

and we can get one from the other.

Note that S̃i’s constitute the encoding matrix S, which

we have to design. In the following, we will design these

matrices S̃i’s (which in turn will determine the encoding

matrix S), with the help of another matrix F, which will

be used to find the error locations, i.e., identities of the

compromised worker nodes. We will design the matrices F

(of dimension k×m, where k < m, which is to be determined

later) and S̃i’s such that

C.1 FS̃i = 0 for every i ∈ [p].
C.2 For any t-sparse u ∈ R

m, we can efficiently find all the

non-zero locations of u from Fu.

C.3 For any T ⊂ [m] such that |T | ≥ (m−t), let ST denote

the |T |p × nr matrix obtained from S by restricting it

to all the Si’s for which i ∈ T . We want ST to be of

full column rank.

865

v = [wT 1]T
M broadcasts v

M Dec

W1

S
(1)
1 A(1)

W2

S
(1)
2 A(1)

W3

S
(1)
3 A(1)

Wm

S
(1)
m A(1)

S
(1
)

1
A

(1
) v

S
(1
)

2
A

(1
) v

+
e
2

S
(1)3

A
(1)v

S (1)m
A (1)

v +
e
m

u = A(1)v

M broadcasts u

M Dec

W1

S
(2)
1 A(2)

W2

S
(2)
2 A(2)

W3

S
(2)
3 A(2)

Wm

S
(2)
m A(2)

S
(2
)

1
A

(2
) u

S
(2
)

2
A

(2
) u

S
(2)3

A
(2)u

+
e
3

S (2)m
A (2)

u+
e
m

∇J(w) = A(2)u

A(1) = [X − y], A(2) = XT

w←− w − α · ∇J(w)

Fig. 1 This figure shows our 2-round approach to the Byzantine-resilient distributed gradient descent. Since gradient is equal to ∇J(w) = XT (Xw−y),
we compute it in 2 rounds, using a matrix-vector (MV) multiplication as a subroutine in each round: in the 1st round we compute u := A(1)v, where
A(1) = [X −y],v = [wT 1]T , and in the second round we compute XTu, which is equal to ∇J(w). To make our distributed MV multiplication Av
Byzantine-resilient, we encode A using a sparse matrix S = [ST

1 ST
m . . . ST

m]T and distribute SiA to worker i (denoted by Wi). The adversary can
corrupt at most t workers (the compromised ones are denoted in red colour), potentially different sets of t workers in different rounds. The master node
(denote by M) broadcasts v to all the workers. Each worker performs the local MV product and sends it back to M. If Wi is corrupt, then it can send an
arbitrary vector. Once the master has received all the vectors (out of which t may be erroneous), it sends them to the decoder (denoted by Dec), which
outputs the correct MV product Av.

If we can find such matrices, then we can recover the desired

MV multiplication Av exactly: briefly, C.1 and C.2 will

allow us to locate the corrupt worker nodes; once we have

found them, we can discard all the information that the master

node had received from them. This will yield ST Av, where

ST is the |T |p×nr matrix obtained from S by restricting it

to Si’s for all i ∈ T , where T is the set of all honest worker

nodes. Now, by C.3, since ST is of full column rank, we can

recover Av from ST Av exactly. Details follow.

Suppose we have matrices F and S̃i’s such that C.1 holds.

Now, multiplying (4) by F yields

fi := Fh̃i(v) = Fẽi, (5)

for every i ∈ [p], where ‖ẽi‖0 ≤ t. In Section III-A, we give

our approach for finding all the corrupt worker nodes with the

help of any error locator matrix F. Then, in Section III-B,

we give a generic construction for designing S̃i’s (and, in

turn, our encoding matrix S) such that C.1 and C.3 hold. In

Section III-C, we show how to compute the desired matrix-

vector product Av efficiently, once we have discarded all the

data from the corrupt works nodes. Then, in Section III-D,

we will give details of the error locator matrix F that we use

in our construction.

Remark 6. As we will see in Section III-B, the structure of

our encoding matrix S is independent of our error locator

matrix F. Specifically, the repetitive structure of the non-zero

entries of S as well as their locations will not change irre-

spective of what the F matrix is. This makes our construction

very generic, as we can choose whichever F suits our needs

the best (in terms of how many erroneous indices it can locate

and with what decoding complexity), and it won’t affect the

structure of our encoding matrix at all – only the non-zero

entries might change, neither their repetitive format, nor their

locations!

A. Finding The Corrupt Worker Nodes

Observe that supp(ẽi) may not be the same for all i ∈ [p],
but we know, for sure, that the non-zero locations in all these

error vectors occur within the same set of t locations. Let

I =
⋃p

i=1 supp(ẽi), which is the set of all corrupt worker

nodes. Note that |I| ≤ t. We want to find this set I efficiently,

and for that we note the following crucial observation. Since

the non-zero entries of all the error vectors ẽi’s occur in the

same set I, a random linear combination of ẽi’s has support

equal to I with probability one, if the coefficients of the

linear combination are chosen from an absolutely continuous

probability distribution. This idea has appeared before in [22]

in the context of compressed sensing for recovering arbitrary

sets of jointly sparse signals that have been measured by the

same measurement matrix.

Definition 1. A probability distribution is called absolutely

continuous, if every event of measure zero occurs with

probability zero.

It is well-known that a distribution is absolutely continuous

if and only if it can be represented as an integral over an inte-

grable density function [23, Theorem 31.8, Chapter 6]. Since

Gaussian and uniform distributions have an explicit integrable

866

density function, both are absolutely continuous. Conversely,

discrete distributions are not absolutely continuous. Now we

state a lemma from [22] that shows that a random linear

combination of the error vectors (where coefficients are

chosen from an absolutely continuous distribution) preserves

the support with probability one.

Lemma 1 ([22]). Let I =
⋃p

i=1 supp(ẽi), and let ê =
∑p

i=1 αiẽi, where αi’s are sampled i.i.d. from an absolutely

continuous distribution. Then with probability 1, supp(ê) =
I.

From (5) we have fi = Fẽi for every i ∈ [p]. Take

a random linear combination of fi’s with coefficients αi’s

chosen i.i.d. from an absolutely continuous distribution, for

example, the Gaussian distribution. Let f̃ = αi (
∑p

i=1 fi) =
αi (

∑p

i=1 Fẽi) = F (
∑p

i=1 αiẽi) = Fẽ, where ẽ =
∑p

i=1 αiẽi. Note that, with probability 1, supp(ẽ) is equal

to the set of all corrupt worker nodes, and we want to find

this set efficiently. In other words, given Fẽ, we want to find

supp(ẽ) efficiently. For this, we need to design a k × m
matrix F (where k < m) such that for any sparse error

vector e ∈ R
m, we can efficiently find supp(e). Many such

matrices have been known in the literature that can handle

different levels of sparsity with varying decoding complexity.

We can choose any of these matrices depending on our need,

and this will not affect the design of our encoding matrix

S. In particular, we will use a k ×m Vandermonde matrix

along with the Reed-Solomon decoding, which can correct

up to k/2 errors and has decoding complexity of O(m2); see

Section III-D for details.

Time required in finding the corrupt worker nodes. The

time taken in finding the corrupt worker nodes is equal

to the sum of the time taken in the following 3 tasks. (i)

Computing Fẽi for every i ∈ [p]: Note that we can get Fẽi
by multiplying (4) with F. Since F is a k ×m matrix, and

we compute Fh̃i(v) for p systems, this requires O(pkm)
time. (ii) Taking a random linear combination of p vectors

each of length m, which takes O(pm) time. (iii) Applying

Lemma 2 (in Section III-D) once to find the error locations,

which takes O(m2) time. Since p is much bigger than m,

the total time complexity is O(pkm).

B. Designing The Encoding Matrix S

Now we give a generic construction for designing S̃i’s

such that C.1 and C.3 hold. Fix any k×m matrix F such that

we can efficiently find e from Fe, provided e is sufficiently

sparse. We can assume, without loss of generality, that F has

full row-rank; otherwise, there will be redundant observations

in Fe that we can discard and make F smaller by discarding

the redundant row. Let N (F) ⊂ R
m denote the null-space

of F. Since rank(F) = k, dimension of N (F) is q = (m−
k). Let {b1,b2, . . . ,bq} be a basis of N (F), and let bi =
[bi1 bi2 . . . bim]T , for every i ∈ [q]. We set bi’s the columns

of the following matrix F⊥:

F⊥ =









b11 b21 . . . bq1

b12 b22 . . . bq2
...

...
...

...

b1m b2m . . . bqm









m×q

(6)

The following property of F⊥ will be used for recovering

the MV product in Section III-C.

Claim 1. For any subset T ⊂ [m], such that |T | ≥ (m− t),
let F⊥

T be the |T |×q matrix, which is equal to the restriction

of F⊥ to the rows in T . Then F⊥
T is of full column rank.

Proof. Note that q = m − k, where k = 2t. So, if

we show that any q rows of F⊥ are linearly independent,

then, this in turn will imply that for every T ⊂ [m] with

|T | ≥ (m − t), the sub-matrix F⊥
T will have full column

rank. In the following we show that any q rows of F⊥ are

linearly independent. To the contrary, suppose not; and let

T ′ ⊂ [m] with |T ′| = q be such that the q× q matrix F⊥
T ′ is

not a full rank matrix. This implies that there exists a non-

zero c′ ∈ R
q such that F⊥

T ′c′ = 0. Let b = F⊥c′. Note that

b 6= 0 (because columns of F⊥ are linearly independent)

and also that ‖b‖0 ≤ m− q = k. Now, since FF⊥ = 0, we

have Fb = 0, which contradicts the fact that any k columns

of F are linearly independent.

Now we design S̃i’s. For i ∈ [p], we set S̃i as follows:

S̃i =









0 . . . 0 b11 b21 . . . bl1 0 . . . 0

0 . . . 0 b12 b22 . . . bl2 0 . . . 0

...
...

...
...

...
...

...
...

...
...

0 . . . 0 b1m b2m . . . blm 0 . . . 0









where l = q if i < p; otherwise l = nr − (p− 1)q. The first

(i − 1)q and the last nr − [(i − 1)q + l] columns of S̃i are

zero. This also implies that the number of rows in each Si

is p = ⌈nr/q⌉.

Claim 2. For every i ∈ [p], we have FS̃i = 0.

Proof. By construction, the null-space of F is N (F) =
span{b1,b2, . . . ,bq}, which implies that Fbi = 0, for

every i ∈ [q]. Since all the columns of S̃i’s are either 0

or bj for some j ∈ [q], the claim follows.

The above constructed matrices S̃i’s give the following

encoding matrix Si for the i’th worker node:

Si =









b1i . . . bqi

. . .

b1i . . . bqi

b1i . . . bli









p×nr

(7)

All the unspecified entries of Si are zero. The matrix Si is

for encoding the data for worker i. By stacking up the Si’s

horizontally gives us our desired encoding matrix S.

867

To get efficient encoding, we want S to be as sparse as

possible. Since S is completely determined by F⊥, whose

columns are the basis vectors of N (F), it suffices to find a

sparse basis for N (F). It is known that finding the sparsest

basis for the null-space of a matrix is NP-hard [24]. Note that

we can always find the basis vectors of N (F) by reducing F

to its row-reduced-echelon-form (RREF) using the Gaussian

elimination [25]. This will result in F⊥ whose last q rows

forms a q × q identity matrix. Note that q = m − k, where

k = 2t. So, if the corruption threshold t is very small as

compared to m, the F⊥ that we obtain by the RREF will

be very sparse – only the first 2t rows may be dense. Since

computing S is equivalent to computing F⊥, and we can

compute F⊥ in O(k2m) time using the Gaussian elimination,

the time complexity of computing S is also O(k2m).
Now we prove an important property of the encoding

matrix S that will be crucial for recovery of the desired

matrix-vector product.

Claim 3. For any T ⊂ [m] such that |T | ≥ (m− t), let ST

denote the |T |p × nr matrix obtained from S by restricting

it to all the blocks Si’s for which i ∈ T . Then ST is of full

column rank.

Proof. For i ∈ [p − 1], let Bi = [(i − 1)q + 1 : iq] and

Bp = [(p− 1)q + 1 : nr − (p− 1)q], where we see Bi’s as a

collection of some column indices. Consider any two distinct

i, j ∈ [p]. It is clear that for any two vectors u1 ∈ Bi,u2 ∈
Bj , we have supp(u1) ∩ supp(u2) = φ, which means that

all the columns in distinct Bi’s are linearly independent. So,

to prove the claim, we only need to show that the columns

within the same Bi’s are linearly independent. Fix any i ∈ [p],

and consider the |T |p × q sub-matrix S
(i)
T of ST , which is

obtained by restricting ST to the columns in Bi. There are

precisely |T | non-zero rows in S
(i)
T , which are equal to the

rows of the matrix F⊥
T defined in Claim 1. We have already

shown in the proof of Claim 1 that F⊥
T is of full column rank.

Therefore, S
(i)
T is also of full column rank. This concludes

the proof of Claim 3.

Since ST is of full column rank, in principle, we can

recover any vector u ∈ R
nr from ST u. In the next section,

we show an efficient way for this recovery.

C. Recovering The Matrix-Vector Product Av

Once the master has found the set I of corrupt worker

nodes, it discards all the data received from them. Let

T = [m] \ I = {i1, i2, . . . , if} be the set of all honest

worker nodes, where f = (m − |I|) ≥ (m − t). Let

r = [rT1 r
T
2 . . . rTm], where ri = SiAv+ ei. All the ri’s from

the honest worker nodes can be written as

rT = ST Av, (8)

where ST is as defined in Claim 3, and rT is also defined

analogously and equal to the restriction of r to all the ri’s for

which i ∈ T . Since ST has full column rank (by Claim 3), in

principle, we can recover Av from (8). Next we show how

to recover Av efficiently, by exploiting the structure of S.

Let r̃j = [ri1j , ri2j , . . . , rif j]
T , for every j ∈ [p]. The

repetitive structure of Si’s (see (7)) allows us to write (8)

equivalently in terms of p smaller systems.

r̃j = Fj(Av)Bj
, for j ∈ [p], (9)

where, for j ∈ [p−1], Bi = [(i−1)q+1 : iq] and Fj = F⊥
T ,

and Bp = [(p−1)q+1 : nr−(p−1)q] and Fp is equal to the

restriction of F⊥
T to its first (nr−(p−1)q) columns. Since F⊥

T

has full column rank (by Claim 1), we can compute (Av)Bi

for all i ∈ [p], by multiplying (9) by F+
j = (FT

j Fj)
−1FT

j ,

which it called the Moore-Penrose inverse of Fj . Since

Av = [(Av)TB1
, (Av)TB2

, . . . , (Av)TBp
)]T , we can recover

the desired MV product Av.

Time Complexity analysis. The task of obtaining Av from

ST Av reduces to (i) computing F+
j = (F⊥

T)
+ once, which

takes O(q2|T |) time naïvely; (ii) computing F+
p once, which

takes at most O(q2|T |) time naïvely; and (iii) computing the

MV products F+
j r̃j for every j ∈ [p], which takes O(pq|T |)

time in total. Since p is much bigger than q, the total time

taken in recovering Av from ST Av is O(pq|T |) = O(pm2).

D. Designing The Error Locator Matrix F

In this section, we design a k × m matrix F (where

k < m) such that for any sparse error vector e ∈ R
m, we

can efficiently find supp(e). Many such matrices have been

known in the literature (for recovering the vector e given

Fe) since the work of [10], that can handle different levels of

sparsity with varying decoding complexity. Most of these are

random constructions, which may not work with small block-

lengths (in our setting, m is a small number). Furthermore,

they can only correct a constant fraction of errors, where the

constant is very small. We need a deterministic construction

that can handle a constant fraction (ideally up to 1/2) of errors

and that works with small block-lengths.

Akçakaya and Tarokh [26] constructed a complex analogue

of the Reed-Solomon codes from k × m Vandermonde

matrices F and gave an O(m2) time algorithm for exactly

reconstructing e from f = Fe, provided |supp(e)| ≤ k/2.

Let z1, z2, . . . , zm be m distinct non-zero elements in R. We

define F to be the following Vandermonde matrix (where

k < m):

F =












1 1 1 . . . 1

z1 z2 z3 . . . zm

z21 z22 z23 . . . z2m
...

...
...

zk−1
1 zk−1

2 zk−1
3 . . . zk−1

m












k×m

(10)

Below we state a result (specialized to reals) from [26].

Lemma 2 ([26]). Let F be the k ×m matrix as defined in

(10). Let e ∈ R
m be an arbitrary vector with |supp(e)| ≤

k/2. We can exactly recover the vector e from f = Fe in

O(m2) time.

Note that F is a k×m matrix, where k < m. Choosing k
is in our hands, and larger the k, more the number of errors

868

we can correct (but at the expense of increased storage and

computation); see Section IV for more details.

IV. RESOURCE REQUIREMENT ANALYSIS

In this section, we analyze the total amount of resources

(storage and computation) required by our method that we

developed in this paper for the Byzantine-resilient distributed

gradient descent (GD) in the presence of t adversarial worker

nodes (which may be different in different rounds) and prove

Theorem 1. Fix an ǫ > 0. Let the corruption threshold t
satisfies t ≤ ⌊(ǫ/(1 + ǫ)) · (m/2)⌋.

As described earlier in Section II-A, we compute the gradi-

ent∇J(w) = XT (Xw−y) in two-rounds; and in each round

we use the Byzantine-tolerant MV multiplication, which we

have developed in Section III, as a subroutine; see Figure 1

for a pictorial representation of our scheme. To compute

Xw − y in the first round, we encode A(1) = [X − y]
and compute u = A(1)v, where v = [wT 1]T . To compute

XTu (which is equal to the gradient) in the second round,

we encode A(2) = XT and compute A(2)u. Let S(1) and

S(2) be the encoding matrices of dimensions p1m × n and

p2m×d, respectively, to encode A(1) and A(2), respectively.

Here, p1 = ⌈n/q⌉ and p2 = ⌈d/q⌉, where q = m− k. Since

k = 2t (by Lemma 2), we have q = (m− k) ≥ m/(1 + ǫ).

A. Storage Requirement

Each worker node i stores two matrices S
(1)
i A(1) and

S
(2)
i A(2). The first one is a p1 × (d + 1) matrix, and the

second one is a p2×n matrix. So, the total amount of storage

at all worker nodes is equal to storing (p1(d+1)+p2n)×m
real numbers. Since p1 ≤ ⌈(1 + ǫ) n

m
⌉ and p2 ≤ ⌈(1 + ǫ) d

m
⌉,

the total storage is
(
p1(d+ 1) + p2n

)
m = p1m(d+ 1) + p2mn

< [(1 + ǫ)n+m](d+ 1) + [(1 + ǫ)d+m]n

= (1 + ǫ)n(2d+ 1) +m(n+ d+ 1).

where the first term is roughly equal to a 2(1 + ǫ) factor

more than the size of X. Note that the second term does

not contribute much to the total storage as compared to the

first term, because the number of worker nodes m is much

smaller than both n and d. In fact, if m− k divides both n
and d, then the second term vanishes. Since |X| is an n× d
matrix, the total storage at each worker node is almost equal

to 2(1+ ǫ) |X|
m

, which is a constant factor of the optimal, that

is,
|X|
m

, and the total storage is roughly equal to 2(1+ ǫ)|X|.

B. Computational Complexity

We can divide the computational complexity of our scheme

as follows:

1) Encoding the data matrix: Since, for every i ≤ k and

j > k, the total number of non-zero entries in S
(1)
i and S

(1)
j

are at most n and p1, respectively (see Section III-B for de-

tails), the computational complexity for computing S
(1)
i A for

each i ≤ k, and S
(1)
j A for each j > k, is O(nd) and O(p1d),

respectively. So, the encoding time for computing S(1)A(1) is

equal to O (k(nd) + (m− k)(pd)) = O
(

(ǫ
1+ǫ

m+ 1)nd
)

.

Similarly, we can show that the encoding time for computing

S(2)A(2) is also equal to O
(

(ǫ
1+ǫ

m+ 1)nd
)

. Note that

computing S(1) and S(2) take O(k2m) time each, which

is much smaller compared to the encoding time. So, the

total encoding time is O
(

(ǫ
1+ǫ

m+ 1)nd
)

. Note that this

encoding is to be done only once.

2) Computation at each worker node: In the first round,

upon receiving v from the master node, each worker i

computes (S
(1)
i A(1))v, and reports back the resulting vector.

Similarly, in the second round, upon receiving u from the

master node, each worker i computes (S
(2)
i A(2))u, and re-

ports back the resulting vector. Since S
(1)
i A(1) and S

(2)
i A(2)

are p1×(d+1) and p2×n matrices, respectively, each worker

node i requires O(p1d+ p2n) = O((1 + ǫ)nd
m
) time.

3) Computation at the master node: The total time taken

by the master node in both the rounds is the sum of the time

required in (i) finding the corrupt worker nodes in the 1st and

2nd rounds, which requires O(p1km) and O(p2km) time,

respectively (see Section III-A), and (ii) recovering A(1)v

from S
(1)
T A(1)v in the 1st round, which requires O(p1m

2)

time, and recovering A(2)v from S
(2)
T A(2)u in the 2nd round,

which requires O(p2m
2) time (see Section III-C). Since k <

m, the total time is equal to O((p1+p2)m
2) = O((1+ǫ)(n+

d)m).

V. ENCODING IN THE STREAMING MODEL

An attractive property of our encoding scheme is that it is

very easy to update with new data points. More specifically,

our encoding requires the same amount of time, irrespective

of whether we get all the data at once, or we get each sample

point one by one, as in the online/streaming model. This

setting encompasses a more realistic scenario, in which we

design our coding scheme with the initial set of data points

and distribute the encoded data among the workers. Later on,

when we get some more samples, we can easily incorporate

them into our existing encoded data. The update with a new

sample point x ∈ R
d requires T = O

(

(ǫ
1+ǫ

m+ 1)d
)

time

in total. This is optimal, since the offline encoding of n data

points requires nT time. At the end of the update, the final

encoded matrix that we get is the same as the one we would

have got had we had all the n+1 data points in the beginning.

Therefore, the decoding is not affected by this method at

all. The efficient update property of our coding scheme is

made possible by the repetitive structure of our encoding

matrix; see (7). This structure is independent of the number

of data points n and the dimension d; it only depends on

the number of worker nodes and the corruption threshold.

We remark that other data encoding methods in literature,

even for weaker models, do not support efficient update;

for example, the encoding of [13], which was designed for

mitigating stragglers, depends on the dimensions n and d of

the data matrix. So, it may not efficiently update if a new

data point comes in.

869

VI. CONCLUSION

In this paper, we focused on the squared loss function

and proposed a solution to the Byzantine-resilient distributed

gradient descent (GD) algorithm in the master-worker ar-

chitecture, where a malicious adversary can corrupt up to

t of the m worker machines, and the compromised ones

can arbitrarily deviate from their pre-specified programs.

Our solution is generic and efficient, and is based on data

encoding using sparse encoding matrices and real error

correction for decoding. In our coding scheme, we distributed

the encoded data matrix among the workers and compute

the gradient at the master node using real error correction.

There is a trade-off between the corruption threshold and

the computational complexity & the storage required by our

coding scheme. So, depending on the scenario, we can choose

the parameters that work best. In particular, with constant

overhead on the computational complexity and the storage

requirement as compared to running the distributed GD

without any adversarial protection, our scheme can tolerate

up to 1/3 of the corrupt worker nodes. We can tolerate up to

⌊m−1
2 ⌋ corrupt worker nodes. Since our encoding matrix is

sparse, the encoding time complexity only incurs a factor of

(2t+ 1) more than what is required by the plain distributed

GD algorithm without an adversary just for distributing the

raw data matrix among m worker nodes. In addition, because

of the repetitive structure of the encoding matrix, encoding

of data in the streaming model is as efficient as encoding

when all the data is available offline.

ACKNOWLEDGEMENTS

The work of the authors was partially supported by the

Army Research Laboratory under Cooperative Agreement

W911NF-17-2-0196, by the UC-NL grant LFR-18-548554,

and by the NSF award 1740047. The views and conclusions

contained in this document are those of the authors and

should not be interpreted as representing the official policies,

either expressed or implied, of the Army Research Laboratory

or the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes

notwithstanding any copyright notation here on.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[2] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Advances in neural information pro-

cessing systems, 2010, pp. 2595–2603.

[3] X. Lian, C. Zhang, H. Zhang, C. Hsieh, W. Zhang, and J. Liu,
“Can decentralized algorithms outperform centralized algorithms? A
case study for decentralized parallel stochastic gradient descent,” in
Advances in Neural Information Processing Systems, NIPS 2017, 4-9

December 2017, Long Beach, CA, USA, 2017, pp. 5336–5346.

[4] T. F. Abdelzaher et al., “Will distributed computing revolutionize
peace? the emergence of battlefield iot,” in ICDCS 2018, 2018, pp.
1129–1138.

[5] J. Konecný, “Stochastic, distributed and federated optimization for
machine learning,” Ph.D. dissertation, University of Edinburgh, 2017.

[6] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–
401, Jul. 1982.

[7] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in
Advances in Neural Information Processing Systems, NIPS 2017, 4-

9 December 2017, Long Beach, CA, USA, 2017, pp. 118–128.
[8] L. Chen, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DRACO:

byzantine-resilient distributed training via redundant gradients,” in Pro-

ceedings of the 35th International Conference on Machine Learning,

ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
2018, pp. 902–911.

[9] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” POMACS, vol. 1,
no. 2, pp. 44:1–44:25, 2017.

[10] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE

Trans. Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.
[11] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,

USA: Cambridge University Press, 2004.
[12] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,

no. 2, pp. 74–80, Feb. 2013.
[13] C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Straggler mitigation

in distributed optimization through data encoding,” in In Advances in

Neural Information Processing Systems, NIPS 2017, 4-9 December

2017, Long Beach, CA, USA, 2017, pp. 5440–5448.
[14] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vul-

nerability of distributed learning in byzantium,” in Proceedings of

the 35th International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018, pp.
3518–3527.

[15] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings of

the 34th International Conference on Machine Learning, ICML 2017,

Sydney, NSW, Australia, 6-11 August 2017, 2017, pp. 3368–3376.
[16] N. Raviv, R. Tandon, A. Dimakis, and I. Tamo, “Gradient coding

from cyclic MDS codes and expander graphs,” in Proceedings of

the 35th International Conference on Machine Learning, ICML 2018,

Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018, pp.
4302–4310.

[17] Z. B. Charles and D. S. Papailiopoulos, “Gradient coding using the
stochastic block model,” in 2018 IEEE International Symposium on

Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, 2018,
pp. 1998–2002.

[18] W. Halbawi, N. A. Ruhi, F. Salehi, and B. Hassibi, “Improving
distributed gradient descent using reed-solomon codes,” in 2018 IEEE

International Symposium on Information Theory, ISIT 2018, Vail, CO,

USA, June 17-22, 2018, 2018, pp. 2027–2031.
[19] K. Lee, M. Lam, R. Pedarsani, D. S. Papailiopoulos, and K. Ramchan-

dran, “Speeding up distributed machine learning using codes,” IEEE

Trans. Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.
[20] S. Dutta, V. R. Cadambe, and P. Grover, “Short-dot: Computing large

linear transforms distributedly using coded short dot products,” in
Advances in Neural Information Processing Systems 29: Annual Con-

ference on Neural Information Processing Systems 2016, December

5-10, 2016, Barcelona, Spain, 2016, pp. 2092–2100.
[21] D. Yin, Y. Chen, K. Ramchandran, and P. Bartlett, “Byzantine-robust

distributed learning: Towards optimal statistical rates,” in Proceedings

of the 35th International Conference on Machine Learning, ICML

2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, 2018,
pp. 5636–5645.

[22] M. Mishali and Y. C. Eldar, “Reduce and boost: Recovering arbitrary
sets of jointly sparse vectors,” IEEE Transactions on Signal Processing,
vol. 56, no. 10, pp. 4692–4702, Oct 2008.

[23] P. Billingsley, Probability and Measure, ser. Wiley Series in Probability
and Statistics. Wiley, 1995.

[24] T. F. Coleman and A. Pothen, “The null space problem I. complexity,”
SIAM Journal on Algebraic Discrete Methods, vol. 7, no. 4, pp. 527–
537, 1986.

[25] K. M. Hoffman and R. Kunze, Linear algebra. Englewood Cliffs,
NJ: Prentice-Hall, 1971.

[26] M. Akçakaya and V. Tarokh, “A frame construction and a universal
distortion bound for sparse representations,” IEEE Trans. Signal Pro-

cessing, vol. 56, no. 6, pp. 2443–2450, 2008.

870

